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June 2003: Correlations need to be substantial to gain advantage in 
ANCOVA. (New Rule, 6.14). 
 
Introduction 
Analysis of covariance has been discussed in the last two months. This 
month’s discussion also involves ANCOVA. The question is, when does it 
pay to use a covariate. This question will be addressed only in the context 
of potential gain in precision. The point can be nicely illustrated through 
sample size calculations. 

 
Rule of Thumb 
ANCOVA requires a substantial correlation of the covariate with the 
outcome variable in order to gain in efficiency. 
 
Illustration 
This example uses the last lines of data for each package from the May 
2003 discussion—the data are given only for illustrative purposes. The 
data are reproduced here. 
 
  Table 1. Aspirin content by package and length 
  of storage in months. 

Package Time (X) Content(mg) 
Bottle 0 345 
 4 325 
 8 342 
 12 334 
 16 325 
 20 317 
 24 319 
Blister 0 328 
 4 334 
 8 335 
 12 325 
 16 331 
 20 330 
 24 328 

 
These data are analyzed by analysis of variance and covariance. For 
comparison purposes they are shown together in Table 2. 
 
The average (over the two packet types) correlation is r = –0.5816. This is 
a substantial value. However, the residual variation is reduced by r2 = 
0.3383 or about 34%. This is precisely the ratio 270.161/798.571=0.3383 
of the SS(Regression)/SS(Residual of the ANOVA part from Table 2). 
That is, the residual sum of squares in Table 2 has been reduced by 
270.161, the sum of squares attributable to regression. 
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 Table 2. Analysis of variance and analysis of covariance of the 
 data in Table 1. 

 ANOVA ANCOVA 
Source of 
Variation 

D.F. S.S. D.F. S.S. 

Packets 1 1.143 1 1.143 
Time   1 270.161 
Residual 12 798.571 11 528.411 
Total 13 799.714 13 799.714 

 
 
Basis of the Rule 
Suppose that the variability of an endpoint Y, without taking a covariate 
into account, is σy

2. If the correlation of Y with a covariate X is ρ then the 
variance of Y at a specified value of X is 

σ y|x
2 =σ 2(1− ρ2). 

Let n be the sample size per group in the usual two-sample comparison, as 
discussed in Chapter 2, and nρ the sample size when a covariate is used, 
then the two sample sizes are related by. 

nρ = n(1− ρ2). 
The variance is reduced by the quantity (1-ρ2). Since the correlation is 
bounded by (-1, +1) the square will always be closer to 0 than the original 
value and (1-ρ2) closer to 1. 
 
Discussion and Extensions 
Table 3 relates nρ and n for specified values of ρ. 
 
  Table 3. Reduction in sample size when covariate 
  is used to reduce variation. 

Correlation 
ρ 

nρ = n(1− ρ2) 

0.0 1n 
0.1 0.99n 
0.2 0.96n 
0.3 0.91n 
0.4 0.84n 
0.5 0.75n 
0.6 0.64n 
0.7 0.51n 
0.8 0.34n 
0.9 0.19n 
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This table shows that correlations less than, say, 0.30 are not going to 
improve the precision of the analysis very much by the use of a covariate. 
With a correlation of 0.30 the savings in sample size is only 9%—not a 
huge amount.  There is also the loss of one degree of freedom due to the 
estimation of the correlation. This is not important when the sample sizes 
are greater than 20, say.  
 
The partitioning of sum of squares attributable to regression and the 
residual sum of squares is nicely additive in this example because of the 
balance in the covariate values in the two groups. This may not turn out to 
be the case when this balance does not exist and/or when the group sizes 
are not equal. 
 
Of course, if the covariates are there for the taking, there is no reason not 
to take advantage of them. If there is more than one covariate the multiple 
correlation coefficient R2 can be used instead of ρ2 in calculating the 
reduction in the residual variance. 
 
An analysis of covariance is usually carried out for two reasons. The first 
is the reduction of variance. This has formed the basis for the argument 
above. But there may be a second reason: adjustment for covariate value. 
For example, adjusting cognitive scores of Alzheimer patients for level of 
education or age. In randomized experiments there should be no need for 
this kind of covariate adjustment if the covariate is unaffected by the 
treatment—as would be the case in the example. 
 
If the treatment affects the covariate as well, then adjustment for the 
covariate value can be carried out by the ANCOVA procedure. For 
example, suppose a treatment affects body weight but organ weight is of 
primary interest. Then organ weights can be compared adjusting for body 
weight. This is not an innocuous statistical procedure. It should only be 
carried out when there is a clear understanding of the biological 
mechanism. Adjustment by body weight could be “overadjustment,” that 
is, removing the effect that is of interest. The same provisos apply to 
observational studies that typically do not involve randomization and thus 
there may be differences in the covariates. Again, adjusting for the 
covariate value may not be appropriate—it depends on the hypothesized 
causal chain leading from the covariates to the outcome variable. In 
epidemiology this problem crops up all the time and epidemiologists have 
developed an extensive vocabulary and methodology for dealing with this. 
A new book that illustrates these concerns nicely is the text by Koepsell 
and Weiss; see especially Chapter 11. The methodology of causal models 
in the social sciences formalizes these issues as well. See for example, the 
work of Greenland and Brumback (2002). 
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